ISRAEL JOURNAL OF MATHEMATICS 77 (1992), 187-210

EQUATIONS DEFINING THE PERIODS
OF TOTALLY DEGENERATE CURVES

BY

L. GERRITZEN

Fakultdt und Institut fir Mathematik, Ruhr-Universitat Bochum
46380 Bochum 1, Posifach 102148, Gebaude NA 2/33, Germany

ABSTRACT
Mumford has studied the generalized Jacobian variety of a singular, irre-
ducible curve in section 5 of his book (1984). It is determined by a period
matrix which is a symmetric matrix whose diagonal is zero. The problem
to determine systems of equations for the period matrices of totally de-
generate curves is the analogue of the Schottky problem. An essentially

complete solution is given.

Introduction

In this article an equation is derived which describes the locus of period matrices
of stable totally degenerate curves of genus 4 whose intersection graph is simple.
The equation is given by a polynomial F in the entries ¢;; of a symmetric 4 x 4
matrix whose diagonal is zero.

This result allows one to deduce systems of equations for the periods of totally
degenerate, irreducible curves of genus > 5.

One can specialize F to obtain an equation F' = 0 describing the periods of
totally degenerate, hyperelliptic curves of genus 3.

The irreducibility of Schottky’s divisor in the space A4 of principally polarized
abelian varieties of genus 4 which is the locus of a modular form J was proved
by Igusa, see [ 1 ]. In order to see how the function F' can be obtained from J one
has to degenerate J in some well-chosen toroidal compactification of A4. The
induction procedure in [vG] seems to degenerate to the simple one described in

Section 5.
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In Section 1 the algebraic torus Qg of totally degenerate symmetric ¢ x g
matrices is introduced.

In Section 2 the period map per, : By, — @, from the moduli scheme B3,
of 2g-marked, stable trees of projective lines whose intersection graph has simple
periods into @ is defined. The image P, is the scheme of periods of totally
degenerate curves, see [M], §5.

The equation F' = 0 for hyperelliptic 3 x 3 matrices is computed in Section
3. In Section 4 the equation F' = 0 describing Py in @4 is deduced. In Section 5
equations defining P, in the open subscheme {g;; # 1} of Q, are given for g > 5.

1. The Torus of Totally Degenerate, Symmetric Matrices

1. Let M be a free Z-module and let ¢ be a symbol for a system of variables.
Denote by Z[g, M] the group ring of M over Z for which the monomial in Z[q, M)
associated to m € M is denoted by ¢™.

Any f € Z[q, M] is given by an expression f = Xmeycmgq™ where v is a finite
subset of M and ¢, € Z for all m. Let xm : Z[g, M| — Z be the Z-linear map

which sends ¢™ onto
1:m' =m,
Smmt 1=

0:m' #m.
Then f = Zpmemxm(f) - ¢™ for any f € Z[q, M]. 1t is called the expansion of f
relative to the monomials (or characters) in Z[g, M].
The support supp(f) of f is defined to be {m € M : xm(f) # 0}. It is
a finite subset of M. Let n : M — Z be a linear form on M, n #Z 0, and

felZigM], f#£0.

Definition: deg,f := sup{n(m) : m € suppf} is called the degree of f relative
to . (4(f) := Y xm(f) - ¢™ where the summation is over all m € suppf for
which 7(m) = deg, f is called the leading term of f relative to 7.

One gets the following rules:

degnf ' f, = degqf + degr'fl)
Colf - £1) = Galf) - CalF):

Proof: Both follow readily from the obvious formula

xm(f- Y=Y XalPxw(f). W

n+n'=m
n,n'€M
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The group of units Z[g, M}* of Z[g, M] are those functions f # 0 for which
supp(f) consists of just one element m such that xm(f) € {+1,-1}; f = £¢™.

Definition: htyf := deg,f — deg(_,)f is called the height of f relative to .
Obviously ht,(+¢™f) = ht, f and ht,(ff') = ht, f + ht, f".
The convex hull of supp(f) in R® M is denoted by conv(f).

2. Let N = N, be a free abelian group of rank g,¢ > 2, and e,..., ¢, a base of
N,. Then the quotient

9
N; = N; @sym N,/ @Ze?
3=1

of the symmetric tensor product of Ny with itself by the subgroup generated by

the squares e} = e; - 1,...,€3 = ¢; - ¢, is also a free abelian group. Its rank is

(;) = Zolg—1)

Let Q, := SpecZlg,N;]. It is considered as an algebraic torus over Z. It
Q)

scheme over Z given through the characters ¢;; = ¢*%,1<i<j <g.

is canonically isomorphic to Gy’ where G, denotes the multiplicative group
Let k be a field. A k-valued point v of Q, is a symmetric g X g matrix with
entries in k,v = (vij), such that v;; = 0 for all 1 and v;; € k* = k — {0} for all
i # .
A matrix with these properties is called a totally degenerate, symmetric
matrix over k. Q, is called the torus of totally degenerate, symmetric
g X g matrices.

3. Let 'y be the group of all automorphisms v : N; — N, that map the set
{xe1,...,%e,} ontoitself. Ty is the group of all proper and improper movements
of the standard g-dimensional cube {z € R? : z = (z1,...,%,), |zi] < 1for all i}
in euclidean space R9. Ty is referred to as the moduli group on the torus of
totally degenerate, symmetric ¢ X g matrices.

Let Ty be the subgroup of Ty of all automorphisms which permute the set
{e1,...,€,} for all i. Let T') be the subgroup of Ty of all automorphisms which
permute the set {ei, —¢;} for all i. Then I'} is a normal subgroup of I'y and I'/T
is canonically isomorphic to I'y. Ty is the semidirect product of I') with T,
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Let ¢; : N — N be that automorphism for which
€5 ] # i
€i(61)={’ o
—e; 1j=1.

Then I') is generated by ,...,¢; and ) = (2/2Z)
T’y acts canonically on N;. If e;e; is the symmetric product of e; with e;, then

v(eiej) = (vei) - (ve;)

for any v € Ty.

I'y also acts canonically on the group ring Z[g, N;]. If m € Ny, then v-¢™ =
g™ and v- f = T xm(f) - "™ for f € Z[g, N}).

I'y acts on @ canonically from right. If v = (v;;) is a k—valued point of Q,,
and if vy € Ty, then vy = w = (wy;) with wi; = va()y) Where 4(i) = 1 if
v(ei) = et

Kee Fg, then v - ¢ = w with

_{vsl i=1 or j=1
wi; = .
vi; : otherwise
for i # j. Then (yf)(v) = f(vy) for any f € Z[q, N;] and any k-valued point v
of Q.

4. In this section we take g = 3. Let
A= (q12 = 1)(g1s — 1)(g23 — 1)
= q12q13923 — 12913 — Q12923 — Q1ades + Q2 + Qi3+ g3 — 1.
Let H':= q12q13923 + 12 + q13 + g23. Let
G’ := qiz2(q1s — 1)*(g2s — 1)* + q13(g12 — 1)*(q23 — 1) + q23(q12 — 1)*(qu3 — 1)?

and F' := A'H' + G'.

If M is any I'3—orbit in N§ we denote by Sps the I's— invariant function given
by Sy = Znemq™.

Let W' be the unit cube in Q @ Nj, i.e.

W' = {Zm;;e;c,- :=1<my;; < +1}.

i<j
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LEMMA 1.4.1: W' n N} consist of the following T's-orbits: Ty = {0},T% =
l"3e12,T2 = P3(612 + 613),T3 = Fae, Té = Pa(—e) where e := e12 + €13 + €23.

We leave the proof to the reader.

Let S;:= S1, Then
So:=1,
S1 =q2+aqs + s +a7 o +a53,
S3 = qiaq1sgas + 057 913 923 + 017 Q13053 + 12973 o3 -

PROPOSITION 1.4.2:
(i) conv(g™®F") is the tetrahedron T spanned by

T; = {e, —€12 — €13 + €23, —€12 + €13 — €33,€12 — €13 — €23}

which consists of the “even” corners of W'. T, consists of the centers of
the edges of T while Ty is the center of T
(i) ¢~°F' = 53 — 25, + 85, and q~¢F" is I's-invariant.

Proof: If m = 2ej2 + 2e13 + €23 one finds that xm(G') =1 and xm(A'H') = -1
and thus xm—e(¢7°F') = 0. Also x2.(G') = 0 and x3.(A'H') = 1 and thus
Xe(g™°F') =1.
If m = 2e12 + €13 + €23 one finds that xm(G') = —4 and xm(A'H') = 2 and
thus
Xewn (g7 F') = 2.

Also x¢(G') = 3-4 and x.(A'H') = —4 and thus xo(¢~*F') = 8. Furthermore
x0(G') = xo(A'H') = 0 and thus x_.(¢g7¢F') = 0. This proves (i) and (ii).
Let & be a field of characteristic p.

PROPOSITION 1.4.3: If p = 2, then 1 ® F' = (qi2q13¢23 + Q12 + q13 + ¢23)? in
k @ Z|N}]. If p # 2, then 1® F' is irreducible. F' is irreducible in Z[N3).

This is achieved by simple computations. Also we note that F' vanishes at the

011
n=1|1 0 1
110

matrix
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because Sp(n) = §M and §T3 = 4,§Ty = 6,§To = 1 and therefore
F'(n) ={T3 — 24T, +8 =0.

The polynomial H' can be expressed as a theta function, in fact:
H' = 120, (912; - _l'é.)
Q12 Q12

where O2(g,z) =1 — 21 — 22 4+ q127122 and where

(0 912) :2_(0 ‘ﬁz)
q(qlzo’q d, 0)°

5. In this section we take g = 4. Let

A= I (-1 =(02—1(a1s = 1)(g2s = 1) (g4 — 1)(g24 — 1)(g4 — 1).
1<i<i<4

Let

H :=¢12913014923924934 912014924 — 713914934 — ¢23G24434

— q12q13923 + @23q14 + Q13924 + 12934

Let

G :=q12034(q13 — 1)*(q14 — 1)*(g2s — 1)*(g24 — 1)?
+ q1ag24(q12 — 1)%(q1a — 1)*(gea — 1)*(gas — 1)®
+ q14g23(g12 — 1)%(q13 — 1)*(g24 — 1)*(g34 ~ 1)?

and F:=AH-G.

PROPOSITION 1.5.1: ¢"*AH,q*G and ¢~ °F are I'y-invariant where

e:= Zeij =e12 + €13 + €14 + €23 + €24 + €34.
i<j
Proof: If 4 € Ty is a permutation of 1, e;,e3,€4, thenyA = A, yH = H, 4G =
G If .
€; 11> 1

7 =€, €1€i ;= .
—e t=1,
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then ;
alA=(-1)—/— - A,
912913914
1
aH=(-1)——— H,
912913914
1
.G = ——5—5 -
q%z‘l?a‘]?«t

One concludes that
61" *AH = ¢ *AH,

aq ‘G=q°G.
As ve177! =¢; for some y € T'y we are through with the proof. ]

One can express H as a theta function. If

Os3(g,z) =1 — 21 — 22 — T3 + q1221%2 + Q1321T3 + 232223 — q12¢13923T1 T2 T3,

one gets:
' T T2 T3
H = (01201392303 (q 5 ) ) )
Q12913 Q12923 413923
where
0 q12 a3 " )
d=laz 0 @z}, ¢*:=(q))
@13 g3 O

and z; = gui.
Denote by fls,,=-1 the function obtained from f € Z[N}] by substituting (—1)
for g4, 924 and ¢34. Then
Algy=-1 = (=1) - 2°A',
H!’]M:—l = (—2)H,1
Glgi=—1 = (-1)2'G,
FIGM:—I = 24 - F.

PROPOSITION 1.5.2: F is irreducible in Z[N}).

Proof: Assume that F is reducible in Z[Nj]. As x2.(F) =1, F is primitive and
thus each prime factor of F is also primitive.

There must exist a prime factor f of F such that fl,,,=—1 =2"-F, 0 <r <4.
But then ht,,; f =2 for all ¢ < j which shows that f = £¢™F.
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2. Periods of Totally Degenerate Curves

1. Let C be a stable totally degenerate curve of genus ¢ > 2 over a field k.
One can find stable, 2g-marked trees of projective lines X = (é’ ,a,b) such that
C =Cmoda = b wherea = (a1y...,aq), b= (by,...,by) are g-tupels of k-
rational points on C, see [GHP], [G]. There is a canonical base wy,...,w, of
differentials of first kind on C such that resq,w; = +1, resp,w; = —1, w; without
poles on C — [a;, b;], where [a;, b;] denote the set of double points in € between
a; and b;, see [G], §1 also [H], Chap IV, §1, Exerc. 1.9, p. 298.
Let

. . du;
Ex := {u = (u1,...,uy), u; rational function on C such that el wi}.
Ui

Let per u be the g x g matrix n = (n;;) such that

- uilg)) L p o
Nij = Ui(bj) fori#j, 7u:=0.

Let G(C) be the intersection graph of C.

Definition: G(C) is simple, if two simple closed unoriented paths v,¥' in G(C),

¥ # 7', have no common edge.

PROPOSITION 2.1.1: Assume that G(C) is simple. Then the following holds:
(i) For any u € Ex the matrix per u is symmetric and its entries outside the
diagonal are in k*.

(ii) per u = per v’ for any u,u’ € Ex

Proof: Let ¢ # j. There is a unique component Y of X such that 7y (a;) #
ny(ai), wy(a;) # ny(b;) where 7y denotes the projection from X onto Y. As
the interval from a; to b; in X has no common double point with the interval
from a; to bj, also 7y (b;) # wy(ai), 7y (bj) # 7y (b;). Then ui(a;)/ui(b;) is the
cross-tatio of the points 7y (a;), 7y (bi), 7y (b;), my(a;) which is an element in
k*. This shows (i) and (ii).

Definition: per X := per u for u € Ex if G(C) is simple. per X is called the
period matrix of X; it is a k-valued point of @,.

2. Let By, be the fine moduli scheme of stable 2g-marked trees of projective
interval, see [GHP]. Let Bj, be the open subscheme of By, which consists of
the simple 2g-marked trees which shall mean that the graph obtained from the
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tree by adding edges between a; and b; is simple. B3, is open because it is the
complement of the union of all hypersurfaces {Ajg4i,g4j; = 0} where A, de-
notes the canonical variable associated to the quadruple v = (v1, v, v3,14), v; €
{1,...,2g} on By, see [GHP), §1.

There is a morphism per, : By, — @, with the following property: if X is
a k-valued point of B3, it is a stable 2g-marked tree of projective lines, then
pery(X) = perX € Qy(k).

PROPOSITION 2.2.1: per,(Bj,) is a Zariski—closed subscheme of Q, and per, is

proper.

Proof: Let M := {(i,7): 1 £i < j < g}. One embeds @, into the M—fold
product IP{" by means of the variables ¢;;,¢ < j. Then IP{W is a torus embedding
of Qy The morphism per, can be extended to a morphism per, : Byy — ]Pfl
sending a point X in By, onto the matrix n = (i;), 7ij 1= Ai—i,—j,;(X)-

Thus per,(Bz,) is a closed subscheme of PY as By, is a projective scheme
over Z. One can easily check that a point of per (By,) is in @, C PM if and
only if X is a simple 2g—-marked tree.

Thus 53¢, (B2,) N Q, = per, (BY, )

Definition: Py := per,(Bj,). It is called the scheme of period matrices of totally

degenerate curves with simple intersection graph.

The question to characterize P, within @, is the analogue of the Schottky
problem for totally degenerate curves, see e.g. [F], [MF], appendix to Chap. 7.
It is hoped that a characterization of P, will shed some light on the Schottky
problem.

Of course P; = @, for g < 3. But P, is a hypersurface in Q4

3. I'y acts on By, from the right. If X = (Y, a,b) is a k-valued point of Byg,v €
Ty, then Xy = (Y,a7,b7) and a?,b” are defined as follows: if y(e;) = e;, then
a] := aj and b :=b;, and if y(e;) = —e;, then a] := b; and b] := a;.

T’y acts also on the open subscheme B3, and the period map per, : B}, — Q
is I'g—equivariant.

Let
ej  J#F4,

e=elez-...-69,fi(ej)’={ e 1j=i
—e; )=1.
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Then ¢ acts trivially on @, while it acts non-trivially on B, if g > 3. Thus per,
induces a morphism per, from the quotient B3 / < € > into @, which is called
the reduced period map.

Let X = (Y, a,b) be a 2g—marked, stable tree of projective lines. Let C(X) =
Y mod a = b be the stable curve obtained from Y by identifying a; with b; for all
i. Then C(X) is a stable curve of genus g which is called the curve associated
to X.

There is a reduced scheme Dy which is the categorial quotient of B;; modulo
the equivalence relation: X ~ X' iff C(X) is isomorphic to C(X").

D, is the coarse reduced moduli scheme of totally degenerate stable curves of
genus g. There is a surjective morphism 7 : Byy/T'y — Dy. The fiber of = over
a curve C € Dy(k) is parametrized by the maximal subtrees of the graph G(C)
of C.

By considerations as in the proof of Proposition (2.1.1), one can show:

PROPOSITION 2.3.1: per, induces a morphism tory : Dy — Q, /Ty which is
called the Torelli map for totally degenerate, stable curves of genus g.

The scheme Q, /T, is the analogue to the moduli space of principally polarized
abelian varieties of genus g.

4. Let v C {1,2,...,2¢},§v > 2, and By,(v) the closed subscheme of By, which
contains all the 2g—-marked trees of projective lines with two components X1, X,
such that a; € X, for all ¢ € v while a; € X for all i ¢ v. Here a; :=b;_4 if i >
g+1

Then an open subscheme of Bz4(v) is in B;, iff one of the following cases
occurs:

(i) thereis a subset v' C {1,...,¢9} such that v =" U {g+i::i €},

(ii) there is a subset v' C {1,...,9} and an element k € {1,...,2¢9} —v',k ¢

Vk—ggv suchthat v=2'"U{g+i:i€v}U{k}.
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o' = {1,...,r}, thenin case (i) the generic 2g-marked curve looks as follows:

If v/ = {1,...,r}, k =r+1, then in case (ii) the generic 2g—marked curve

looks as follows:

PROPOSITION 2.4.1: Let X be a k-valued point of Byy(v) N B3, and assume
that v is of type (i). Then if n = perX one has

nij =1

ifiev, j€{1,...,9} —v'. If X has two components and if ¢ > 3, the fiber of
the period map per, over X is 1-dimensional if r or g —r is equal to 2. Otherwise
dim per;*(X) = 2.

Remark: If ' = {1,...,r} then per X is of the block form

n' is a r X r matrix, 7" is a (g — r) X (g — r) matrix.

PROPOSITION 2.4.2: Let X be a k-valued point of Byg(v) N B3, and assume
that v is of type (ii).
For n = perX one has
mij =1

ified, je{l,...,9} — (v U {k}).
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Remark: Ifv' ={1,...,r}, k =r +1, then perX has the form

rori1

r41

where the 1 in the upper half denotes a r x (§ — r — 1) matrix. The proofs of
(2.4.1) and (2.4.2) are left to the reader.

5. Let B;‘:p be the closed subscheme of By, of fixed points of the automorphism
on By, given by the action of e = €1€2 -+ ¢4 on By,

A k—valued point X of By, belongs to B;‘z' P iff there is an automorphism ox of
the tree of projective lines underlying X which maps a; to b; and b; to a, for all
i. Then ox 0 ox = id and ox is uniquely determined by X. If X is irreducible,
X = (IPy x k, a,b) and if z is global coordinate on IP; x k such that

2(a;) =z, 2(b))=yi, 11 =0, ;=

then X is hyperelliptic (i.e. X € B;‘;’P) iff z;y; = zjy; foralli,j > 2 and ox is
the involution z — 1/z.

Proof: Let X¢ = (IPy x k, d',b'). If 2(al) = 2!, 2(8) = ¥}, 2] =0, y] = o0,
then z} = 1/y;, yi = 1/z;. Thus X* is isomorphic to X iff there is A € k* such
that (Az}, A\y}) = (zi,yi) for all £ > 2. This is the case iff z;y; = A for all ¢ > 2.
1

Let PIYP := per,(B? N B},). It is a closed subscheme of Q;. While PMP =
Qs, already PPP is a hypersurface in Q3.

6. Let X = (IP; x k,a,b) be a 2g-marked, stable projective line over a field
k. Introduce a global coordinate z on IP; x k such that z(a;) = 0, 2(b) =
00, z(az2) =1 and put z; := z(a:), yi = z(b;) € k for i > 2. Then per X is the

g X g matrix v = (vj;) such that

I
v; = — fori> 2,
Yi

(%':7:') (zi — =) yi —v))

W= (z.-—y,) T (i~ )i - -"J)

for2<i<j<y.
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Let
x; 1 . .
tij :=_,+z__, for2<i<j <g.
Yi Vi
Then
T :l:j
tij = v ;— +vi—.
T z;

LEMMA 2.6.1: For2 <i < j < g one has

£ = (v + 1vis = (vni + v1;)
v (vij — 1) '

Proof:
oe: = (@Y T 25%5) — (@iy5 + 259:)
T (i + 25y;5) — (=T + viys)
. s 2
_ G+ -G+ )
- . e zT:T;
Gr+3)-Gar+)
_ b — (v +v1y)
tij — (viiv1; + 1)

which shows the lemma. 1

3. Periods of Hyperelliptic Curves of Genus 3

1. Let X = (IP; x k, a,b) be a 6-marked, stable, hyperelliptic projective line over
k. We use the notation of (2.6) to obtain

Y3 Y2 Y3 Y3 Y3

as T3ys = Tays = Y2. As vz = 1/y2, 13 = Z3/ys = y2/y2 one gets
4‘012‘013 = t§3.

As
_ (vi2vis + L)vas — (v12 + v13)

t
23 (v2s = 1)

one has the equation
4‘012913('023 - 1)2 = A2

with
A = (vigv13 + 1)vz3 — (v12 + v13)

= (vizv13 + 1)(v2s — 1) + (v12 — 1)(v13 — 1).
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Let 0 = (v12 — 1)(vis — 1)(vaz — 1). Then
(vas — 1)? - [(v12v13 + 1)? — dvizv13) + 20(vipvys + 1) + (vi2 — 1)} (v3 - 1)? =0.

One substracts

g := v12(v13 — 1)*(vas — 1) + va3(v12 — 1)%(vg3 — 1)* + vo3(v12 — 1)%(vy3 — 1)
on both sides to get
(—g) = (vz3 — 1)’ B+20(vi2v13 + 1) + (v12 — 1)} (v13 — 1)? —va3(vi2 — 1)%(v13 —1)°
with
B = (vi2v13 + 1)? — 4v12013 — v12(v13 — 1)% — v13(v12 — 1),
B = (vjav13 — 1)? = (v13 — 1)? = (v12 — 1)(v13 — 1)? — vi3(v12 - 1)?%,
B = v}y(v}, — 1) = 2v13(v12 — 1) = (v12 — 1)[(v1s — 1)* + v1a(v12 = 1)),
B = (‘012 - 1) ‘ B,,
B' = v%(v1z + 1) — 2v13 — [(v13 — 1)? + vis{v1z — 1],
B' = v} + v2y = 2033 — vi; 4 2v13 — 1 — vypv13 + V13,
B' = v}v12 — v1av12 + 013 — 1 = (v13 — 1)(vizviz + 1).
Thus
(—9) = (vas — 1) - 0 - (viz2v13 + 1) + 20(v12v13 + 1) — 0 - (v12 — 1)(v13 — 1),
(—9) = o(v12v13v23 + Va3 + 12 + v13).
This proves if F' is the function of (1.4).
PROPOSITION 3.1.1: F'(v) =0.
COROLLARY: P;‘ YP is the closed subscheme of Q3 given by the equation F' = 0.

Proof: Ps}l YP is a closed subscheme of codim 1 in Q3. F' is contained in the ideal
I of O(Qs) = Z[N}] of functions vanishing on Pi¥P. As F' is irreducible and the
height of I is 1 we get I = F' - Z[Nj]. |

2. Let X = (Y,a,b) be a 6-marked, stable tree of projective lines consisting
of two components Y;,Y,> and assume that a; € Y3, b; € Y3 for all 2. Then the

curve C(X) associated to X is the union of two projective lines.
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X is hyperelliptic if there is an isomorphism ¢ : ¥; — Y3 such that
aY1nY2)=Y1nY,, o(a;)=0b; foralli.

Let z; be a global coordinate on Y; such that 6*z3 = 21 and 2; - (Y1 NY32) = o0.

Then z; := z1(a;) = z2(bi) =: ¥i.
sym

Let u = (u1,u2,u3) € EY™(k) := {u € Ex(k) : per u is symmetric }, see [G],
§1. Then v := per u is a totally degenerate, symmetric matrix over k and

vij = t(z; — 2:)(yj — yi) =tz ~ z:)?
for some t € k*.
Let
Fy) = @2y + @55 + 23 — 2012013 ~ 2¢12923 — 201323
be the homogeneous part of F' of degree 2 relative to g¢;;.
PROPOSITION 3.2.1: F('z)(”) =0

Proof: Without loss of generality one may assume that z; =0, z, =1, t=1.

Then vip = 1, vy3 = 2%, vo3 = (23 ~ 1)2. Then
v, + vl + vl =1+ 23 + (23 — 423 + 622 — 423 + 1)
and )
V12013 + Vigv2a + V13v23 = 23 + (23 — 1) + z3(z3 — 1)?
=22 422 — 223414 25 — 223 + 22

=1+ z}§ — 223 + 323
1
= 5(”%2 +ojy+og). B

Let n : Ny — Z be the linear map which sends m = mjzejes + myzejes +
mazeges onto miz + my3 + ma3. Then conv(F')N{y e RO N3 : n(y) =2} is a
2-dimensional face of conv(F”). Then the leading term {(_,)(F") of F' relative
to (—n) is equal to Fy,). It is Zp(m)y=2Xm(F') ¢

3. Let M be a free Z-module of finite rank n. Let T be a polyhedron in R@ M
whose vertices are in Q ® M. This means that T is the convex hull of a finite set
of points in Q @ M.

T defines a rational finite polyhedral cone decomposition ) of R® M where
M is the dual Z-module of M as follows:
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Let t be a vertex of T and oy := {p € R® M : n(z) > n(t) for all z € T}.
Then o, is an n—dimensional rational polyhedral cone in R ® M and there is a
unique polyhedral cone decomposition ), of R® M whose n—dimensional cones
are the system {o, : t vertex of T'}.

Let now M = Nj and }° = } cony(pr)- Then the torus embedding Qg of
Q3 induced by ) allows a 2 : 1 covering a onto IP3. One can show that the
period map per, : Bg?® N Bf — Q3 can be extended uniquely to an extended
period map per, : B:y P —» Q@s. The image of a o per; in IP; seems to be a

hypersurface of IP3 of degree 4.

4. Periods of Totally Degenerate Curves of Genus 4

1. Let X = (IP; X k,a,b) be a 8-marked, stable projective line over k. We use
the notation of (2.6). Thus v = (vi;) = per,X and

z;
tij = A R §
Yi Y

for2<i<y.

PROPOSITION 4.1.1:

2 2 2
t23ta4tag + dvigv13v1g = viatyy + v13la + V14i2;3.

Proof: One has
t23 = vi3— +v12T3  as Ty =1,
T3

1
124 = V14— + V12T4,

T4

I3 Ty
t3qg = vig— +v1i3—,

T4 z3

and thus

1 Ty T3 2
t23lpq = V13V14 + v12V13 — + V12V14— + V) T324,
T3T z3 T4

_ 2 1 2 z§ 2 2 2 1 2 -"?2
taataalas = V13V1s—5 + V12V13V14 + V12V —5 + VipV1423 + U3V —5 + V12013
z? « 3 z3

2 2
+ v12v13v14 + VY132,

while

22 2

2 2 T3 2 T4
Vigl3y = V12V14 5 + V12Vi3 + 2v12v13014.
4 3
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Thus
2 2 1 2 1 2 2, .2 2
taslaalsq — viaty, = VisVis 3 + ViVia 3 + V1201423 + V1,137
i 3
But also
2 2 1 2 2
V143 = VisVia 3 + vy, v1423 + 2v12013014,
3

1
2 2 2 2
i3ty = V13V)y 27 + vip 13Ty + 2v12v13014,
1

from which follows

2 2 2
t23ta4lag — vi2i3, = V1433 + v13tyy — 4v12V13014. ]

Let sij := (vij — 1)tij and p := (v23 — 1)(v24 — 1)(v34 — 1); the equation above
then takes the form

[+ 523524834 + 4 v12v13v14 = vy2(v2s — 1)%(vag — 1)%83,
+ vis(ves — 1)*(vas — 1)%s3,

+ via(vas — 1)2(034 - 1)23§3~

Let Sij := (quig1; + 1)gij — (q1i + @15) € O(Qs) = Z[Ng] for2 < i < j <4 and
M :=(g23 — 1)(g24 — 1)(g3a — 1). Let
A= M- Sy3- Sy Sa,
Bz = qia(q24 — 1)2(‘134 - 1)2533»
Bas = qua(g2s — 1)*(gaa — 1)*S34,
Bas = qi2(g2s — 1)*(g2s — 1)2S%,,
C = 4q12q13q1a M?,
B := By3 + Bys + B,
F:=A+C-B.

COROLLARY 4.1.2: F vanishes on Py C Q.

Proof: Let B* be the open subscheme of By consisting of the 8-marked stable
projective lines. Then B is contained and dense in By. If X is a point in
Bir, then F(per,X) = 0 as g¢;;(per,X) = vij. As per,(BY") is dense in Py, the

statement follows.
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2. Let nij : Ny — Z,% < j, be the linear form which sends exe;, k < !, onto
{ 1 se=k, j=1

0 :otherwise.

Let

W:={y€R®Ni=OSmJ‘(y)S2, > 77:':'(!4)23} and e= ) e

1<i<j<4

PROPOSITION 4.2.1: .
suppF C W,
X2e(F) =1
Proof:
(1) suppA C W, suppB;; C W, suppC C W and thus supp(A+C — B) C W.
(2) x2¢(A) =1, x2¢(Bij) = x2(C) = 0 and thus

X2e(F) = X2e(A) + x2¢(C) = x2(B) =1. &

PROPOSITION 4.2.2: F is irreducible in O(Q,) and generates the ideal in O(Q,)

of functions vanishing on P,.

Proof:

(1) Let I be the ideal in O(Q4) of functions vanishing on Py. As P, is irreducible
of codim 1 in @y, the ideal I is a prime ideal of height 1 and is thus a principal
ideal: I = f-O(Q4), f € O(Q4). F € I and thus F' generates I if F is irreducible.
(2) Assume that F is reducible. Let

N*t:={me€ Nj:nj;(m)>0} and R:={h€Z[N, :supph C Nt}

Then R is the ring of polynomials in the variables g;;.

If F' is reducible in Z[N], it is also reducible in R and we may choose a
generator f of I in R.

Then there is 7 such that deg,.. f =1, As I is [';~invariant we may assume
that 7j = 34.

Let M be the submodule of Nj generated by ejez, ejes, ereq, ezes, ezeq.
There is a canonical projection p : @4 — SpecZ{M] induced by the inclusion
M C Nj. In Lemma (5.2.2) it is shown that p gives generically a 2 : 1 map
P, — SpecZ[M]. This is a contradiction to the fact that deg,,, f = 1.

Thus F' is irreducible. ]
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3. Let F be the function defined in (1.5).
PROPOSITION 4.3.1: F =F.

Proof:
(1) Let F|g,5=1 be the function obtained from F by substituting 1 for gz3.
We claim:

F~‘|qza=1 = —qi4(g2¢ — 1)%(g34 — 1)%(q12 — 1)*(q13 — 1)%.

This is true as Clq”=1 = 0, Bg4|q23=] = 0, B34|q23_—_1 = 0, Alqza=l = 0 and

Baslgas=1 = ©14(q24 — 1)*(g3s — 1)? - S%3g,4=1 and
S23 = ((g23—1)+1)(q12q13+1)— (@12 +913) = (g23-1)(q1zq13+1)+(q12—1)(q13 1)

and 523|q;3=1 = (q12 - 1)(q13 - 1). It follows that ﬁlqza=1 = —-qu”:],G as in
(1.5).
(2) Let V be the closed subscheme of Q4 given by the equation

A=0, A:= H(q,'j -1).
i<j
Then (F + G)|V =0.

This is true because (F' + G)lgiy=1 =0forallz,j as F,G are invariant under
the action of the permutation group I'. It follows that F + G = A - H for some
H ¢ Z|NY).

(3) H generates a I'y~invariant ideal of O(Q,) and for any m € supp H one
has n;;(m) € {0,1}. Thus

A= fo+ fiqia + foqra + f3g3a + fraqragas + fi3q14934 + f23g24934 + F123914924934

with fu € Z{q12, q13, ¢23).
If H(1/q14,1/q24,1/34) denotes the function obtained from H by replacing
gis by g we get

. 1 o
H(ql—4’ P a) = (—q1424934) 18,

from which one gets fo = —fi2s, f1 = —fas, fo = —f13, fs = —fiz. As
fi2s = 912913923 and suppAH C W one gets H = H. |
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5. Curves of Genus > 5

1. Let ¢ > 4 and v = (14, v2,v3,vs) be a quadruple of distinct indices in § =
{1,...,9}. Then v determines a Z- linear map v’ : Ny — N, which maps e;-e; of
N onto ey, e,; in Ny. Then v induces a ring homomorphism ' : Z[N;] — Z[N})

and a morphism @, — Q4 which will be denoted by vg. One has the property:
vQ(Py) C Py

for any v.
Let F, := V'(F) € Z[N;] = O(Q,). Then F,|P; = 0 for any v. Let Q; =
Qg — {Ay =0} where
Ay = H (1 - gij).
1<i<i<g
A k-valued point v = (v;;) of Q4 belongs to Q; if and only if v;; # 1 for all 1 < j.
Let I be the ideal in O(Q}) generated by {F, : all v}.

PROPOSITION 5.1.1: The set of zeroes of I in Qj coincides with Q3 N P,.
The proof will be given in (5.3) below.

2. Denote by Bi{; the open subscheme of B;4 consisting of those trees of projec-

tive lines with only one component.

ProposITION 5.2.1: Let X, X' be k-valued points of Bi{g' such that per X =
per X'. Theneither X' =X or X' = X¢, e:=¢;-...- €.

The proof will be given at the end of section (5.2) below.

Let X = (IPy x k, a,b), X' =(IP; x k, a',V') and let z be a global coordinate
on IP; x k such that z; = z(a;), i = 2(vi), 2\ = z(a}), ¥} = 2(b}). We can choose
z such that z; = 2} =0, y; = y{ = 00, 22 = zj = 1. Then X is isomorphic to
X' iff z; = 2}, yi =y} for all 4.

Let v = per X, v' = per X'

LEMMA 5.2.2: Assume that
vii = 5,
v2i = vy,

for all i. Then y, = y3 and for all ¢ > 3 one gets:

zi=gz; and y =y
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or 1 1
V14 Vi1s
=" and yi = .

Vi2 T; V12 ¥i

Proof: If vy; = v{; for ¢ > 2, there is A; € k* such that

z

-

7y = Nigiy ¥i = Aigi

because vj; = z./y: and vy; = z;/y;. Let

Ty ZIj

tij £ —z—;+
1y — ) t] ¢
Yi o Y Y;

)

as in (2.6). Then
(viiv1j + 1)vi; = (v1i + v15)
tij =
(vij - 1)

and similarly for ¢{;. Thus one gets ty; = ty; for all i > 3 from vy; = vy;, v1i = vy;.

Now
i zj
tl] = Uy + v1i—,
j zi
z! 3
, A
ti=vy— oo
Ait; Ajz;
= V4 + v1i s
and one gets for all ¢ > 2:
Z; /\2 Z9 )\i Z;

Zg i
vii— + V12— =V — + viz -
; T2 Ai z 2 22

As z, = z/ one gets from v1z = v}, that y, =y} and Ay = 1. Thus for: > 3:

1 1
Vi — + V12%;i = Vii— + V12 AT,
z; AiTi

Solving this quadratic equation for A; gives two solutions:

V12 T YiZg Iy Yi
and
U ] ]
i 2T
V12 T} Z;
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Remark: If X is hyperelliptic, then X = X' whenever the assumptions of (5.2.2)
are fulfilled.

LEMMA 5.2.3: Assume that vy; = v};, v2i = v};, v3; = v§; for all 1. If
X'#X and X' #£X¢

then z3ys = y2.

Proof:
(1) V3 = vg,- iff 23; = tl3i and

T3 T:
t3; = v1;— + viz—,
Ty I3
') !
I .
! 3 1
t3; = vii—y +vi3—,
i T3
/\3 I3 /\,’1,’

Xizi | Mz

'
t3,‘ = Vi

The equality t3; = t3; is a quadratic equation for A;/A; which has the solutions

(2) Let X" = X*. Then X" is isomorphic to

(B x kya",b'), o(af) = =(B) =3, of =0, 4 = o0, f = 32,4/ = 2.
1 3

As per X" = per X one gets p; € k* such that
" Y2
Ty = Ry = Hi,
1
yi = pivl = w2
z
Thus u; = z;yi/yz for all 1 > 3 and

! "
Ty = NTi = Az

If z; # zi, then A\; = ya/z;yi and A\;p; = 1, thus z!/ = 2.
(3) Let 2§ = z3. Then there is ¢ > 3 such that z} # z;. Then
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and thus y, = z3y3
(4) H z§ # z3 there is an index ¢ > 3 such that z{ # . Then ¢ =z}, z! # z,.

i, 4 t #H, 0 2

As in (3) thus y) = =y. As ¥ = y2, 25y} = y2/z3y3 one also gets z3y3 = yq.

Proof of Proposition (5.2.1): Assume that X # X', X¢ # X'. Then apply
Lemma (5.2.3) to three indices 1,2, j instead of 1,2,3. One gets z;y; = y2 thus
for all j. But then X = X¢ and from Lemma (5.2.2) we get that X' = X. |

Remark: Proposition (5.2.1) is related to a special case of a theorem of Y.
Namikawa (injectivity of Torelli map), see [N], Thm. 7. However, he has given a

proof only for g < 3, see [N], p. 254.

3. Now we prove Proposition (5.1.1). Let v € Q4(k), F,(v) = 0 for all v. Let v’
(resp. v") be the (g — 1) x (¢ — 1) matrix obtained from v by deleting the last
column and the last row of v (resp. the column and row to the index (g — 1)).
Then v', v" € Q,-1(k) and F,(v') =0, F,(v") =0 for all v
If ¢ = 4 we already know from Section 4 that v = per X, X € Bj, (k). If

g 2 5 we proceed by induction. Thus there are X', X" € Bj,;_,(k) such that
per X' =v', per X" =v". Asv’, v" € Q;_, both X', X" are irreducible. Let

X'=(Py xk, V), X"=(P;xk, d"b")
and

Y'= (P, xk, o5, Y"=(P; xk, «",8")

with

o =(ay,...,a5_3), B = (b, b5s),

o' = (a'l',...,ag_z), B’ = (b?,...,bg_z).
Now per Y = per Y" and thus Y/ = Y" or Y' = (Y")e. IfY' = (Y")* we
replace X" by (X")¢. Thus without loss of generality we can assume Y’ = Y,
If then X := (P1 x k, a,b), ai:=qajfori<g-1, ag:=aj_,, b; := b} fori <

g—1, bg:=0b_,, then per X =v.
Remark: The set of zeroes in @, of all F, seems to be P, always, but the proof

is more involved as certain combinatorial problems arise.

One also can carry out the computation of the equations which describe the
set of period matrices of “totally degenerate Prym varieties”, see [B], p. 618.
This will be done in a forthcoming article. The Prym period matrices in Qs are
a hypersurface in Q5.
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